
- 1 -

Three-dimensional one-to-one pickup and delivery
routing problem with loading constraints.

Oleksandr Lytvynenko1, Oleksij Baranov1, Remy Dupas2, Igor Grebennik1
1 Kharkiv National University of Radio Electronics, 61000 Kharkiv, Ukraine

2 Univ. Bordeaux IMS, UMR 5218, F-33400 Talence, France

Abstract. We propose mathematical model and solving strategy for PDP
with 3D loading constraints in terms of combinatorial configuration instead of
traditional approach that uses boolean variables. We solve traditional one-to-
one Pickup and Delivery Problem in combination with problem of packing
delivered items into vehicles by means of proposed combinatorial generation
algorithm.

Keywords: Pickup and Delivery problem, loading constraints, combinatorial
generation, packing of parallelepipeds.

1 Introduction
There are a lot of articles dedicated to finding various algorithms for solving

Pickup and Delivery Problem (i.g., [1-3]). Several of them take into account real-
world loading constraints describing them as LIFO ([4]) or FIFO ([5]) buffers, or in
form of 2D [6] or 3D [7-8] loading constraints. However, usually objective function
and all limitations in PDP are described as inequalities with boolean variables. Also,
in most of algorithms solving PDP, it’s hard or impossible to regulate balance
between solving time and result precision. In this article, we describe PDP with 3D
loading constraints in terms of combinatorial sets instead of traditional description
that use boolean variables. Also, we solve Pickup and Delivery Problem by means of
combinatorial generation algorithm. Described algorithm can balance between
solution quality and solution time and is very flexible at all. Also, it produces
comparatively good results in adjustable time.

2. Problem Formulation
We consider classical Pickup and Delivery Problem (PDP) [1], one-to-one,

symmetric case, i.e. every arc (,)i j is equal to the arc (,)j i and could be replaced by

one edge. Pickup and delivery problem is modeled on complete graph (,)G V A

where V is the set of all vertices, {0,1,..., 2 1}V n , where 0 and 2 1n denote the

depot, and A the set of all arcs. There are v identical vehicles available; each vehicle
has a weight capacity Q and a three-dimensional rectangular loading space defined

by width W, height H and length L. Each client i , ni J , {1,2,..., }nJ n , requires

the pickup or delivery of one three-dimensional item having width iw , height ih and

- 2 -

6th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2016, June 1 – 4, Bordeaux, France

length il with total weight iq (pickup nodes are associated with a positive value iq ,

delivery nodes with a negative value iq). We assume that all items are rectangular
boxes. There are next limitations on loading items into a vehicle (3D-constraints): (1)
The items can only be placed orthogonally inside a vehicle; however, items can be
rotated by 90 on the width–length plane; (2) The stability of the packed items is
important; one method to ensure stability is to require items that are placed on top of
other items to have sufficient supporting areas. A packing is feasible if all items are
either placed directly on the floor of the vehicle or on top of other items with total
supporting area of at least some percent of their base areas; (3) All items can be easily
unloaded in appropriated delivery point. When delivery client i is visited, its
corresponding item must not be stacked beneath nor be blocked by items of clients
that are to be visited later.

The objective is to find a set of at most v routes (one per vehicle) such that: (1)
Every vehicle starts from the depot, visits a sequence of clients and returns to the
depot; (2) All clients are served, and every client is served by exactly one vehicle; (3)
No vehicle carries a total weight that exceeds its capacity; (4) All items demanded by
all the clients served by a vehicle can be orthogonally packed into that vehicle while
satisfying 3D-constraints; (5) The total cost of all edges included in the routes is
minimized.

3. Mathematical Model
3.1. Designations
P ... set of backhauls or pickup vertexes (clients), {1, 2,..., }P n

D ... set of line hauls or delivery vertexes (clients), { 1, 2,..., 2 }D n n n

iq ... load at vertex i ; pickup nodes are associated with a positive value iq ,

delivery nodes with a negative value iq , 2 2, {1,2,..., 2 }n ni J J n ,

iw , ih , il … width, height and length of the loaded (unloaded) item at vertex i

respectively, 2ni J ,

v ... number of vehicles,
Q ... capacity of each vehicle,

, ,W H L … width, height and length of the vehicle loading space respectively,
C …set of pairs of corresponding pickup and delivery clients,

1 1 2 2{(,), (,),..., (,)}n nC p d p d p d ,

(,)i ip d C … pair of corresponding pickup and delivery clients, ip P , id D ,

i id p n , ni J ,

 … number of loaded vehicles, ,

- 3 -

6th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2016, June 1 – 4, Bordeaux, France

1 2, ,...,C C C … a partition of C,
1

j
j

C C

 , i jC C , i J , j J ;

there is a one-to-one correspondence between each set jC of pickup and delivery

clients and loaded vehicle j which serves this set of clients, j J ,

j jn Card C , j J ,
1

j
j

n n

 ,

(,)c i j . . . cost to traverse arc or edge (,)i j ,

1 2 2{ , ,..., }
j

j j j
j nV i i i … set of all vertexes included in jC .

()jP V … set of permutations generated by elements of jV ; this set describes all

possible paths of vehicle j, i.e. all possible sequences of visiting all vertexes served by
vehicle.

()jkQ i ... load of vehicle j when arriving at vertex 2,
j

j
nki k J .

0 0 0 0(, ,)j j j ju x y z … coordinates of the pole of an placement area in a vehicle j .

3.2. Decision variables of the problem.

1 2(, ,...,)U U U U , 1 2(, ,...,)
j

j j jj
nU u u u , where

(, ,)j j j j
i i i iu x y z … coordinates of the pole of an item i in a vehicle j

corresponding to set jC , ji V , j J ;

()j
jP V … path (i.e. the sequence of visiting vertexes) of vehicle j;

(,), {(,), (,)}j
i i i i i i ii lw h lw l w w l … orientation of an item i in a vehicle j ,

ji V , j J ,

We have n items which have a form of parallelepipeds
3

1 2 3 1 2 3{ : (, ,) |0 ,0 ,0 }i i i ix R x x x x x l x w x h , ni J ,
v identical placement areas jD (also having a form of parallelepipeds) are given,

j J :
3

1 2 3 1 2 3{ : (, ,) |0 ,0 ,0 }jD x R x x x x x L x W x H

3.3. Φ-functions
 -functions are used for mathematical modeling and solving of wide classes of

problems of placement various geometrical objects (see [9,10]). They allow to
describe conditions of touching, intersection and non-intersection of geometrical
objects. Also a big advantage of -functions is that they allow to describe problem
of placement of geometrical objects as a mathematical programming problem.In this
article, we use -functions to describe formally conditions of mutual non-

- 4 -

6th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2016, June 1 – 4, Bordeaux, France

intersection for two parallelepipeds and condition of correct placement of
parallelepiped into the placement area. Article [10] contains more detail information
about such application of -functions.To describe 3D constraints, we use 2 types
of -functions:

(, , ,)j j jj j
m mi iil u u v v 1 1max{ , ,j jj j

m i m mi ix x x x (1)

2 2 3 3, , , }j j j jj j j j
m i m m m i m mi i i iy y y y z z z z

– -function of pair of parallelepipeds – for checking whether item i (determined

by pole coordinates j
iu , linear dimensions , ,j j j

i i ix y z and orientation j
iv) intersects

with item m (determined by pole coordinates j
mu , linear dimensions , ,j j j

m m mx y z and

orientation j
mv) (if (1) 0 then items don’t intersect);

0 0(, ,)j j j j
m mm u u v 10 0min{ , ,j jj j

m m mx x x x L (2)

2 30 0 0 0, , , }j j j jj j j j
m m m m m my y y y W z z z z H .

 – -function of parallelepiped and placement area – for checking whether item m
can be placed into a placement area (if (2) 0 then item can be placed);

3.4. Objective function and constraints

2 1

1 1 2
1 1

[(0,) (,) (, 2 1)] min
j

j

n
j j j j

k k n
j k

c i c i i c i n

 , (3)

1

() ()
s

j j
k k

k

Q i f i Q

 , 2 jns J , j J , (4)

, (),
()

, (),
i

i

q if i n vertex is a pickup
f i

q if i n vertex is a delivery

0 0

(, , ,) 0, , , ,

(, ,) 0, .

j j jj j
m m nim i i

j j j j
m m nm

u u v v i m J i m

u u v m J

, j J . (5)

Here 1(0,)jc i is a distance from the depot (vertex 0) to the first visited vertex,

2(,2 1)
j

j
nc i n – from the last visited vertex to the depot. As mentioned above,

vertexes 0 and 2n+1 are different designations for a single depot. Other designations
are already described in previous sections.

4. Decision Strategy
We propose a two-level strategy for solving of the problem. On the upper level we

implement a partitioning of set C of pickup-delivery pairs to subsets 1 2, ,...,C C C .

Methods of the partitioning may be different, for example heuristic, something like

- 5 -

6th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2016, June 1 – 4, Bordeaux, France

clustering when solving large scale traveling salesman problem. We have to put to each
cluster jC pairs (,)i ip d of corresponding pickup and delivery clients which must be

served by one vehicle. Making clusters for that problem is not the main purpose of
our work, that’s why we chose the simplest k-means clustering algorithm. Classical k-
means algorithm [11] deals with single points, but we want to make clusters of pairs
(,)i ip d . We substitute pair (,)i ip d with single point ik , which is the middle point

between ip and id .

On the lower level, we deal with single cluster jC served by single vehicle and

construct a path (sequence of vertex visiting) for it. We consider a permutation of

elements of set jV : j ()jP V , which describes the path of vehicle. The

permutation also defines an order of loading and unloading of items for vehicle j and

thus order of unloading of items to/from the vehicle (inverse order to j) and an

order of visits of clients corresponding to order of loading/unloading. Path j should
satisfy all described limitations. To take into account item rotations, we substitute

each element in j (i.e. vertex) by vector {(,), (,)}i i i i ilw l w w l , ji V . So finally

we obtain the composition of permutations. So, to construct a path for single vehicle j
we should choose an optimal (according to (3)) permutation of its vertexes jV +

determine orientation {(,), (,)}i i i i ilw l w w l of each vertex in a path. Below we solve

a problem of generating optimal (according to (1)) path j for single vehicle j.

5. Solving Algorithm For Lower Level

Exact solution. To solve the problem of generating permutations j , we use the
algorithm GenBase described in [12]. This algorithm is quite universal because of its
ability to generate various combinatorial sets with given properties. For the
convenience of further presentation, let us denote the path of the current vehicle j as

jt ; also first i vertexes of path t will be called partial path 1 2(, ,...,)i
it t t t . The

algorithm has a recursive nature: at each recursion level
0 0
2 1 2 1, {0,1...2 1}n ni J J n it expands the current partial path 1 2(, ,...,)i

it t t t by

adding the next vertex 1it at the end of the path and thus obtaining a new partial path
1

1 2 1(, ,...,)i
it t t t
 of length 1i at the next level. Consequently, at level i=2n, the

desired path 2nt t is obtained. In other words, on each iteration the algorithm just
adds a new vertex to the current partial path. Elements 1it must satisfy some
restrictions arising from specific features of each combinatorial set. Let us denote a

tuple of all those elements as 1 2(, ,...,)i
kF f f f at each level 0

2 1ni J . Now we

can say that for each , {1,2... }k kj J J k the algorithm adds a new element

- 6 -

6th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2016, June 1 – 4, Bordeaux, France

1i jt f to the current path 1 2(, ,...,)i
it t t t and makes a recursive call of itself with

an extended partial path 1
1 2(, ,...,)i

jt t t f . To generate all the paths, algorithm

GenBase should be called with an empty path 0 ()t . For PDP paths, tuple iF

contains only vertexes satisfying the following restrictions: 1) vertexes in it are
unique (1 , 1..i zt t z i); 2) each “pickup” vertex must be visited before a

corresponding “delivery” vertex. It means that delivery vertex can be added to path
it only when it already has a corresponding “pickup” vertex

(1 1: ()i i zt n z t n t); 3) restrictions (2) upon the maximum payload capacity

of the vehicle; 4) if 1it is a pickup, then new box will be placed into a vehicle. This

requires to check 3D constraints if 1it is a pickup. To validate 3D-constraints, we

use the algorithm described in [10]. Note that the algorithm for validating 3D-
constraints can rotate each item in the horizontal plane if required. This leads to
determining vectors ,i jlw i V . Described algorithm products a recursive tree, where

each vertex at levels i < 2n-1 is a partial path and vertexes at last level i = 2n-1 are
full paths. While running algorithm, at levels i < 2n-1 we expand each tree leaf, i.e.

add new vertex from iF to a partial path. When all paths generated (tree is complete),
we choose a solution: it’s a path with best value of (1).

Heuristic solution. As there are a large number of pickup-delivery pairs in real
PDP problems, we need an heuristic for generating not all, but some good paths. For
this we’ll modify a described procedure for obtaining exact solution. Because of
algorithm GenBase is universal, it is easy to inject any heuristics into it at the step of

expanding tree leaves (adding points from iF to partial solutions). We can select

‘best’ points from iF and use only them for expanding tree leaves excluding other,
‘bad’ points. For the considered problem, the heuristic can be as follows: (H1)

Vertexes in iF are sorted by ascending the distance from: the depot, if i=0 (it’s easy
to assume that the first vertex of the path should be near the depot); the last vertex in
the current path (it) (if i >0). (H2) Recursive calls of GenBase are made only for the

first RBW% of elements of the tuple iF , where RBW is the predefined constant. So
we expand RBW% tree leaves. Other vertexes are excluded from further
consideration. (H3). As checking 3D constraints is a complex procedure, we check
them not every time pickup is added but with predefined probability check_prob
[0;1] at all levels except the last i=2n-1. At last level i=2n-1, we always check 3D
constraints to prevent invalid path to be a final solution. Combination of H1 and H2
of described heuristic a modification of well-known beam search procedure [13]. In
regular beam search, beam width is a constant while our “beam width” is a relative
value – some percent of tree vertexes. So let us denote it as relative beam width
(RBW). By changing the value of RBW, we can balance between time of work and the

accuracy of results: we can include more or less elements of iF to the further path
generation.

- 7 -

6th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2016, June 1 – 4, Bordeaux, France

6. Computational Experiments
We used described heuristic to solve one-to-one PDP problems for n up to 50. To

evaluate the efficiency (result quality and solution time) of proposed heuristic, we
obtained exact and heuristic solutions for the bunch of instances for n=3,4,5,6 (total
120 instances). For each instance, we tried to obtain exact solution and 3 heuristic
solutions for RBW=10,30,50%. For all instances, check_prob was 0.2. After obtaining
heuristic solutions, we compared resulting cost (1) with cost of optimal path obtained
in exact solution, so we obtained relative cost increase. We analyzed how
cost_increase (Fig.1), heuristic solution time (Fig.2) and relative frequency of ‘jack
pot’ (heuristic produces an optimal solution, Fig.3) depend on RBW for various n.

Fig. 1. How cost_increase (y - axis) depends on n (see legend) and RBW (x - axis)

Fig. 2. How heuristic solution time (y - axis) depends on n and RBW (x - axis)

Fig. 3. Relative frequency of ‘jack pot’ (y - axis) for various n and RBW (x - axis)

7. Conclusions
We proposed mathematical model and solving strategy for PDP with 3D loading

constraints in terms of combinatorial configuration instead of traditional approach
that uses boolean variables. We solved traditional one-to-one Pickup and Delivery
Problem in combination with problem of packing delivered items into vehicles by
means of proposed combinatorial generation algorithm. The main advantages of
proposed approach and solution strategy are: (a) ability to balance between solution

- 8 -

6th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2016, June 1 – 4, Bordeaux, France

quality and time (by varying RBW parameter); (b) ability to get not one best solution
but a set of good solutions (because we generate many admissible solutions in our
algorithm); (c) flexibility of solution algorithm: by changing way of determining

iF one can easily change algorithm logic. Proposed algorithm is quite universal: it has
been already used in [12] for solving other optimization and combinatorial problems.

References
1. D. Pisinger, S. Ropke. A general heuristic for vehicle routing problems.

Computers & Operations Research, Vol. 34, Issue 8 (2007), 2403-2435.
2. Renaud J, Boctor FF, Ouenniche J (2000) A heuristic for the pickup and

delivery traveling salesman problem. Comput Oper Res 27:905–916
3. S. Ropke, J.-F. Cordeau (2008). Branch-and-Cut-and-Price for the Pickup

and Delivery Problem with Time Windows
4. J.-F. Côté, M. Gendreau, J.-Y. Potvin. Large Neighborhood Search for the

Pickup and Delivery Traveling Salesman Problem with Multiple Stacks.
Wiley Periodicals, Inc. NETWORKS, Vol. 60(1). – 2012, pp. 19-30.

5. G. Erdoğan, J.-F. Cordeau, and G. Laporte. The pickup and delivery
traveling salesman problem with first-in-first-out loading. Computers &
Operations Research, 36:1800-1808, 2009.

6. A. Malapert, C. Guerét, N. Jussien, A. Langevin, and L.-M. Rousseau. Two-
dimensional pickup and delivery routing problem with loading constraints.
In Proceedings of the First CPAIOR Workshop on Bin Packing and
Placement Constraints (BPPC'08), May 2008, Paris, France

7. E.E. Zachariadis, C.D. Tarantilis, and C.T. Kiranoudis. The pallet-packing
vehicle routing problem. Transportation Science, 46:341-358, 2012

8. G. Fuellerer , K.F. Doerner, R.F. Hartl, M. Iori.Metaheuristics for vehicle
routing problems with three-dimensional loading constraints. European
Journal of Operational Research 201 (2010) 751–759

9. G. Scheithauer, Yu. G. Stoyan, T. Ye. Romanova Mathematical Modeling
of Interactions of Primary Geometric 3D Objects // Cybernetics and Systems
Analysis, 41(3), 2010, pp. 332–342.

10. I. V. Grebennik, A. V. Pankratov, A. M. Chugay, A. V. Baranov Packing n-
dimensional parallelepipeds with the feasibility of changing their orthogonal
orientation in an n-dimensional parallelepiped // Cybernetics and Systems
Analysis, 46(5), 2010.– P. 793–802.

11. J.B. MacQueen. Some Methods for classification and Analysis of
Multivariate Observations. 5th Berkeley Symposium on Mathematical
Statistics and Probability 1. University of California Press, 1967.

12. I. Grebennik, O. Lytvynenko. Generating combinatorial sets with given
properties. Cybernetics and Systems Analysis. Volume 48, Issue 6,
November 2012, pp 890-898.

13. Bruce T. Lowerre. "The Harpy Speech Recognition System", Ph.D. thesis,
Carnegie Mellon University, 1976.

