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Abstract. Wood remanufacturers grapple with several challenging characteristics. One of the most 
important difficulties in this industrial sector today concerns how to maintain promised service levels 
in highly dynamic market. To include the stochastic nature of demand in the production planning, multi-
stage stochastic programming models are proposed and tested in this study. Our preliminary results 
show that the solution of a multi-stage model has the potential to significantly improve the performance 
of traditional planning models at a relatively low cost.  
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1   Introduction 

This study is motivated by a real-scale case in the wood remanufacturing industry, which transforms pieces 
of lumber into bed frame components. Production planning is quite a complex task in this context, since 
from a given piece of lumber many types of products can be produced while following a divergent co-
production logic that cannot be avoided. Moreover, a given component can be produced using different 
alternative processes (consuming different types of lumber and producing different sets of co-products). 
These alternative processes are differentiated according to the production yield, required inputs, set of co-
products, production times, and production costs. Furthermore, the market is highly dynamic, having a wide 
range of products, with short order-cycle times, and production needs to be planned according to a make-
to-order philosophy in an environment with unreliable demand. These characteristics cause complexity in 
production planning environments of such mills and lead wood remanufacturers to dynamic plans. In this 
context, it is difficult to keep the promised service level at low costs. 
The literature reports that stochastic programming approaches can efficiently deal with uncertainty in 
production planning, especially when dealing with highly variable demand. Most existing stochastic 
programming models in production planning assume a two-stage model [1, 2]. In two-stage stochastic 
programming, the decision process takes place in two stages. In the first stage, actions tackle uncertainty 
and in the second stage the corrective actions are chosen after the realization of the random variables. Multi-
stage stochastic programming approaches have been applied to deal with uncertain demand in several areas, 
such as capacity planning [3, 4] and lot sizing [5, 6], just to mention a few. Although stochastic 
programming has also been used in the area of planning optimization in the forest products industry [7, 8], 
it is still an open research field in this industrial sector.  
According to recent research in the forest value chain by [9], representing uncertainty through scenarios for 
operational problems is essential in forestry. The underlying uncertainty needs to be well represented in a 
manageable and feasible model. The literature regarding production planning in the wood remanufacturing 
industry is limited. A few researches propose lean manufacturing models [10], and production planning 
models [11, 12, 13]. Even though the inherent characteristics of softwood remanufacturing differentiate it 
from other plants in the forest products industry and make this sector even more complex to manage, the 
application of stochastic programming has been missed.  
Thus, the objectives of this paper are: 1) to propose a multi-stage stochastic programming model for 
demand-driven production planning under uncertain demand for the remanufacturing sector; 2) to perform 
some preliminary tests in a real-scale industrial context and evaluate if this approach is really superior to 
the current approaches and estimate the possible performance gains; 3) to evaluate its computational costs 
in order to assess whether the new approach can be employed in a real industrial environment. In order to 
do so, we suppose that demand uncertainty evolves during the planning horizon as discrete time stochastic 
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process. As a result, the uncertainty is represented through a scenario tree and an objective function is 
chosen to represent the risk associated with the sequence of decisions to be made. The stochastic model 
aims to provide a production plan that is technically possible to be implemented while taking into 
consideration the possible demand scenarios and delivering a full recourse action in the future.  
The remainder of the paper is as follows. In Section 2, we propose a multi-stage stochastic program for 
wood remanufacturing production planning with uncertain demand. Experimentation and computational 
results are presented in Section 3.  Section 4 concludes the paper and discusses possible future works.   

2 A multi-stage stochastic program with uncertain demand 

Most practical decision problems involve a sequence of decisions that respond to business conditions that 
evolve over time. Multi-stage stochastic programming approach is proposed to address optimization models 
in multiple periods while the uncertainty is revealed, and decisions are taken at every stage. In the following, 
we first describe the scenario tree, and then provide mathematical formulations for multi-stage stochastic 
programming.  

2.1 Modeling the uncertain demand 

We suppose that demand uncertainty evolves during the planning horizon as discrete time stochastic 
process. Scenario trees are common structures to show how uncertainty unfolds over time as the possible 
sequences of data are depicted. A common scenario tree structure includes regular scenario tree wherein all 
nodes have the same number of child nodes. We consider three possible market conditions for products 
demand; namely, High, Average, and Low to generate a regular trinomial scenario tree where each node 
has three child nodes (branches) with High, Average, and Low random demands. Demand data is fitted by 
normal distribution probability function using statistical tests. Thus, a three-point discrete distribution can 
be approximated by the Gaussian quadrature method [14]. To present the random demand as a scenario 
tree, the planning horizon is divided into stages. Each stage shows the step of time when new information 
on the random demand is available to decision maker. According to the case condition, we also assume that 
the demands for all products are perfectly correlated and have the same market condition at each stage of 
the scenario tree. Moreover, it is supposed that the decision maker is perfectly aware of the demand scenario 
at the start of each stage. As the availability of information on the uncertain parameter at the start of each 
stage in the scenario tree is perfect, a full recourse action is considered for this uncertain parameter in the 
multi-stage stochastic model. 
As we cluster the 54-period planning horizon into 4 stages, the first stage consists of time period zero 
(current time), the second stage includes periods 1-18, the third stage consists of periods 19-36, and finally 
the fourth stage includes periods 36-54. We suppose that if at stage i the market is booming, the demand 
scenario for all products can be expected to be High. If the market is steady, the demand scenario for all 
products can be expected to be Average. In sluggish and weak market conditions, the demand scenario for 
all products can be expected to be Low. Such clustering results in a scenario tree with 27 demand scenarios 
and 40 nodes.  

2.2 Multi-stage stochastic programming model  

In this section we propose a multi-stage linear programming model for production planning in wood 
remanufacturing mills. The original deterministic model was proposed in [11]; however, we extend it 
through adding a different optimization approach. The new model (1A)-(9A) is in Appendix A.  

2.2.1 Notations 

The following notations are used for: 
Sets  

consumed
P  Products p that can be consumed 
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produced
P  Products p that can be produced 

T Set of periods in the planning horizon, t T  is an index 

R  Set of recipes r (A recipe is called an alternative process)  
ST  Scenario tree 
,n n  Nodes of the scenario tree  ,n n ST   

( )predec n  Predecessor of node n in the scenario tree 

nt  Set of time periods corresponding to node n in the scenario tree 
(number of periods in one stage) 

Parameters   

rtc  Production costs associated with using recipe r in period t  

pt
i  Inventory holding cost per unit of products producedp P in period t 

pt
bo  Backorder cost per unit of product producedp P in period t 

r  Capacity required for each recipe r per unit time 
tc  Available capacity for period t (number of time units) 

0pic  Inventory of material consumedp P at the beginning of planning horizon 

pt
s  Supply of raw material consumedp P provided at the beginning of period t 

0pip  Inventory of product producedp P at the beginning of planning horizon 

pr  The units of raw material consumedp P consumed by recipe r 

pr  The quantity of product producedp P produced by recipe r 

prr  Selling price per unit of product producedp P according to recipe r 
( )pt nd  Demand of product producedp P to be delivered by the end of period t at node n of the 

scenario tree 
( )prob n  Probability of node n of the scenario tree 

Decision variables 

( )rtX n  Control variable - Number of times each recipe r should be run in period t at node n of 
the scenario tree 

( )
pt

IC n  Inventory size of raw material consumedp P by the end of period t at node n of the scenario 
tree  

( )
pt

IP n  State variable - Inventory size of product producedp P by the end of period t at node n of 
the scenario tree 

( )
pt

BO n  State variable - Backorder size of product producedp P by the end of period t at node n of 

the scenario tree 

( )pt nF  Quantity of sold product producedp P  by the end of period t at node n of the scenario tree 

2.2.2 The multi-stage model 

A multi-stage stochastic model is formulated based on the scenario tree for the uncertain demand in this 

section. The control variable of model (1)-(7) is production plan rtX . The state variables of the plan are the 
inventory quantity variable (

ptIP ) and the backorder quantity variable (
ptBO ). As we suppose that the 

decision maker (planner) is aware of which demand scenario is forced for the stage, the multi-stage 

stochastic model is a full recourse with regard to demand scenario. As a result, the decision variables rtX , 
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the inventory quantity variables 
ptIP  and the backorder quantity variables

ptBO for each node of scenario tree 
are defined to present the model.   
 

( )

( ) ( ( ) ( ))

produced

produced

n

T

pr pt

n ST t r R p P

T T

rt rt pt pt pt pt

n ST t r R t t p P

prob n r F

prob n c X inv IP n bo BO n

Maximize
  

   





 
 
 

 
 
 

  

   

 (1) 

( )r rt t

r R

X n c
 

  
,nt t n ST    (2) 

1( ) ( ) ( )pt pt pt pr rt

r R

IC n IC n s X n
 

     
(3) 

, , , ,

1

( ) 1

consumed

n

n

n

p p t t n n ST

n if t t
n

predec n if t t

   

 
 

 





  

1 1( ) ( ) ( ) ( ) ( ) ( )pt pt pt pt pr rt pt

r R

IP n BO n IP n BO n X n d n 
 

       
(4) 
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1

( ) 1

,produced

n

n

n

p p t t n n ST

n if t t
n

predec n if t t

   

 
 

 





  

( ) ( )
produced

T

pt pt

t p P

F n d n


   
, ,produced

np p t t n ST     (5) 

( ) 0, ( ) 0rt ptX n IC n   , ,,consumed

np p t t n ST r R      (6) 

( ) 0, ( ) 0, ( ) 0pt pt ptIP n F n BO n    , ,produced

np p t t n ST     (7) 

 

The objective function in (1) consists in maximizing the expected profit, which is the difference between 
total revenue and total costs. Constraint (2) guarantees that the total production time does not exceed the 
available time and production capacity. Constraints (3)-(4) ensure flow equilibrium of raw materials and 
final products. Constraint (5) guarantees that sales do not exceed customer demand. Constraints (6)-(7) 
enforce the non-negativity on the decision variables. The decision variables in the model (1)-(7) are indexed 
for each node and a set of periods in each stage denoted by nt . To transfer the inventory and backorder 
quantities from one stage to another one, two variables are considered (

ptBO and
ptIP ). These variables 

transfer the ending values of inventory and backorder of the previous stage to the first period of relevant 
nodes at the current stage. In other words, when the stage changes, the first period of the current node ( n ) 
takes the initial inventory and backorder quantities from the last period of the immediate predecessor node 
( n ) in the previous stage. However, the other periods (except the first period) at the current node ( n ) in 
the given stage, the initial inventory and backorder quantities derive from previous periods at the same node 
( n ).  
Notice that machine reconfiguration (setup time) for switching from one recipe to another is constant in 
this model. This assumption makes the model feasible to compute an exact result. However, considering 
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binary decision variables related to the setup time might cause infeasibility to compute an exact result with 
a deterministic algorithm. Under this condition, a decomposition method i.e., Lagrangian relaxation or 
Bender decomposition would be adopted to solve the model. 
Another point is that alternative approaches to deal with this problem include Markov decision processes 
and Approximate Dynamic Programming. Such approximation approaches may be useful for large problem 
instances. 

3 Preliminary computational results 

A wood remanufacturing mill in Eastern Canada is selected as a case study. The planning horizon consists 
of 54 periods. 
For random demand data, we use normal distribution according to statistical tests results. We also compare 
the solutions of three scenario trees for 4-stage, 3-stage and 2-stage models to show the differences between 
dynamic recourse models and static resource one. To describe the demand evolution over the planning 
horizon, four demand patterns (DP) are considered with the same mean but different standard deviations 
(DP1:5% mean, DP2: 10% mean, DP3: 20% mean, and DP4: 30% mean). Considering one planning 
approach, demand patterns (4 patterns), scenario trees (3 trees), and repetitive numerical experiments (30 
runs), we generate a total number of 360 problems and solve them. To solve the proposed model, CPLEX 
12.6.1 and OPL 6.2 are used. All numerical experiments are conducted on an Intel® Core™ i7-4700HQ 
processor, 2.40GHz, 12 GB of RAM, running Microsoft Windows 8.1.  
In Table 1, we compare the solution of a 4-stage stochastic programming model to those of a 3-stage model, 
2-stage model, and deterministic equivalent model for the four demand patterns with respect to the expected 
profit, the expected inventory/backorder costs and CPU times. As can be observed, the profits of the 2-
stage models are less than those of the multi-stage stochastic models and by increasing demand variability 
at each stage (from DP1 to DP4), the differences between the profit of plans in multi-stage stochastic 
programming models become bigger from the plan of  two-stage stochastic models and deterministic 
equivalent models. Moreover, by increasing the number of stages the inventory/backorder costs also 
decrease. Along with that, the table clearly indicate that in each stage, the increase in demand variability 
(from DP1 to DP4) results in increase the inventory/backorder costs. The CPU column shows that the high 
quality of multi-stage stochastic model requires higher computational time compared to those of the two-
stage ones; however, it still has reasonable time. As a result, multi-stage models have better performance 
while demand variability increases. 

 

Table 1: Results comparison of different production planning models 

Demand 
pattern 

Production 
planning 

model 

Expected 
profit 

Expected 
INV/BO  

costs 

CPU time 
(seconds) 

Possible gains 
(expected 

profit) 

Possible gains 
(Expected 

costs) 
DP1 4-Stage SP 111,581 48,726 824 _ _ 

 3-Stage SP 82,510 49,044 252 35% 1% 
 2-Stage SP 60,840 51,033 93 83% 5% 
 Deterministic 35,340 52,574 0 216% 7% 

DP2 4-Stage SP 99,613 49,058 825 _ _ 
 3-Stage SP 76,448 51,136 250 30% 4% 
 2-Stage SP 52,826 52,175 91 89% 6% 
 Deterministic 32,660 52,988 0 205% 7% 

DP3 4-Stage SP 91,075 51,800 826 _ _ 
 3-Stage SP 71,981 52,104 254 27% 1% 
 2-Stage SP 48,494 52,935 92 88% 2% 
 Deterministic 29,588 53,494 0 208% 3% 

DP4 4-Stage SP 82,257 67,404 823 _ _ 
 3-Stage SP 64,843 73,060 251 27% 8% 
 2-Stage SP 42,879 80,132 93 92% 16% 
 Deterministic 27,985 84,938 0 194% 21% 
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Figure 1 graphically presents some results of Table 1. Generally, since these preliminary results indicate 
that the solutions of multi-stage stochastic models are better than the deterministic models, this should come 
as no surprise. The expected profits of the 2-stage models are less than those of the multi-stage stochastic 
models; however, their results are far superior to those of the deterministic models. In addition, it can be 
noted that significant gains can be obtained in terms of expected profits (up to 216%) and expected costs 
(up to 21%). Most important, this is obtained at a computational cost of less than 14 minutes of CPU time 
with a standard machine, which makes this model fairly useful in a real-industrial environment where 
decision makers need fast decision support systems. We did not regard more stages in the scenario trees 
because the difference between the 3-stage and 4-stage models is not very significant. 
 

 
 

 

Figure 1: Expected profits for different planning models  

3.1 Quality of stochastic solutions 

To compare the value of the two-stage and multi-stage models in different demand patterns, we evaluate 
the “Value of Multi-stage Stochastic Programming” (VMS) proposed by [15]. The VMS is defined as

MS TSv v  where TSv and MSv  are the optimum objective values of two-stage and multi-stage models, 
respectively. Figure 2 shows the VMS in four different demand patterns. The observation from Figure 2 is 
that the pattern of demand distribution has an influence on the magnitude of the VMS. In other words, as 
the variability of demand increases at each stage, applying a multi-stage stochastic model becomes more 
significant with respect to its maximization minimization objective.  

 

Figure 2: Comparison of different planning models in terms of VMS 
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4 Conclusions  

We propose a multi-stage stochastic model to address the problem in a real-scale wood remanufacturing 
mill. The numerical results confirm that the quality of the multi-stage stochastic model is better than those 
of the deterministic equivalent and two-stage models. Another observation is that, as the variability of 
demand increases at each stage, the difference between the expected profit of the multi-stage stochastic 
model and the deterministic and two-stage stochastic models increases and this proves the significance of 
using multi-stage under increase on demand variations. As further extensions of this study, adding setup 
time constraints in the model and solving the model with a decomposition method can be considered. For 
large problem instances, Markov decision processes and Approximate Dynamic Programming could be 
considered as alternative approaches. Robust optimization can be another extension for the production 
planning of the wood remanufacturing mills involving challenging characteristics. 
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Appendix: Deterministic linear programming model 

( )
produced produced

T T T

pr pt rt rt pt pt pt pt

t r R t r R tp P p P

Maximize r F c X i IP bo BO
  

        (1A) 

 
r rt t

r R

X c
 

  1, ...,t T   (2A) 

1 0 1 1P p p pr r

r R

IC ic s X
 

     
, 1consumedp p t    (3A) 

1pt pt pt pr rt

r R

IC IC s X
 

     
, 2, ...,consumedp p t T    (4A) 

1 1 0 1 1p P p pr r p

r R

IP BO ip X d
 

     
, 1producedp P t    (5A) 

1 1pt pt pt pt pr rt pt

r R

IP BO IP BO X d 
 

      
, 2, ...,producedp p t T    (6A) 

produced

pt pt

t T p P

F d
 

   
, 1, ...,producedp P t T    (7A) 

0, ,rt pt ptX BO IP    , , 1, ...,producedr R p P t T      (8A) 

0ptIC   , 1, ...,consumedp P t T    (9A) 

 


