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Abstract. We propose a two-stage stochastic programming modeling framework for multi-period
multiple allocation hub location under uncertainty. A discretized planning horizon is considered and
stochasticity is assumed for the flows to be routed through the network. When uncertainty can be de-
scribed by a discrete random vector with a finite support it is possible to derive the extensive form of
the deterministic equivalent. However, this results in a large-scale mixed-integer linear programming
model that nonetheless can be enhanced using several families of valid inequalities. Computational
tests performed using benchmark data are reported and show that the new sets of valid inequalities are
able to provide a good polyhedral description of the feasibility set, which is of relevance
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1 Introduction

In a hub location problem a set of nodes is given such that a flow must be sent between each pair of nodes.
By imposing some structure to the underlying network it may be possible to route the flows between origin-
destination (O-D) nodes in an more “efficient” way. A common structure is the one induced by the selection
of some nodes to become hubs, i.e., to receive the flow (e.g., mail, passengers) and redistribute it (to their
destination or to other hubs). The links between hubs are usually transversed by large amounts of flow,
which makes it possible to take advantage from economies of scale in terms of transportation costs.
In this work we investigate a stochastic multi-period multiple allocation hub location problem. We consider
a discretized and finite planning horizon. The decisions to be made concern (i) when and where to install
new hubs and their initial capacity, (ii) when and where to expand capacity for existing hubs, and (iii) how
to route the flow between O-D pairs in each period. We make several assumptions:

• The potential locations for hubs are a subset of the nodes underlying the problem.

• At the beginning of each time period it is possible to open new hubs. When this happens it is nec-
essary to decide how many modules the new hub will get. In the beginning of subsequent periods
it is possible to install additional modules although a limit is assumed for the maximum number of
modules allowed in each location.

• A hub must process its own outbound flow and distribute its own inbound flow.

• Capacities are modular, i.e., the capacity of a hub at some point in time is fully determined by the
number of modules installed in the hub so far.

• The capacity of each hub refers to the maximum flow it can process.

• During the planning horizon hubs can neither be closed nor their capacities reduced, i.e., we are
considering a pure phase-in problem.
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• Each non-hub node can be allocated to more than one hub in each time period. Such allocations can
change during the planning horizon.

• Uncertainty is associated with the flows in the different periods of the planning horizon.

• Uncertainty can be captured by a finite set of scenarios, each having some occurrence probability.

• A risk neutral attitude is assumed for the decision maker. This means that the current value of future
assets will be captured by expected values.

The goal of the problem is to minimize the total cost, which includes (i) the setup of cost for installing new
hubs and their initial operating capacity, (ii) the cost for expanding the capacity of existing hubs, (iii) the
cost for operating hubs, and (iv) the cost for routing the flow through the network.
To the best of the authors’ knowledge, no work has been published within the area of hub location that casts
stochasticity in a multi-period setting. Nevertheless, some works can be found dealing with these aspects
separately: [4], [7], and [9] study multi-period hub location problems; stochastic hub location problems
have been investigated in [3], [8], [15], [16], [17], and [18].
The literature addressing hub location problems with modular capacities is also scarce. Modular capacities
in the context of hub location have been previously considered in [4], [10], and [12].
We formulate our problem using a two-stage stochastic programming modeling framework: the first stage
captures the strategic decisions and consists of defining a plan for locating the hubs and setting up their ini-
tial capacity for the entire planning horizon; the second stage captures the tactical and operational decisions,
that is, capacity expansion of existing hubs and flow routing. We note that in both stages of the modeling
framework we are defining a multi-period plan: in the first stage we define a multi-period plan for locating
hubs and their capacities; in the second stage we will be designing a a multi-period plan for expanding ca-
pacities and for serving demand. The reasoning underlying this two-stage framework has to do with the fact
that strategic decisions often require time to be implemented whereas tactical and operational decisions can
be more easily adjusted (namely when more information about the flows becomes available). We also point
out that the application of a two-stage stochastic modeling framework to stochastic multi-period problems
has been considered by some authors for other problems (see, e.g., [1] and [2]).

2 Optimization Model

As it was already mentioned in the previous section, we propose a two-stage modeling framework for our
problem. Accordingly, before uncertainty is revealed, there is a here-and-now decision to make. After-
wards, uncertainty is disclosed and a recourse action is taken.
In our particular case, the first stage decision concerns the location of the hubs over the planning horizon
as well as their initial capacity. In the second decision level we include decisions about the allocation of
the non-hubs to the hubs, the value of the flow variables in all time periods of the planning horizon, and the
capacity expansion for existing hubs.
In order to formulate an optimization model, we take as a starting point the well-known formulation pro-
posed in [6] for static and deterministic multiple allocation hub location problems.
Next we introduce some notation that will be used throughout the paper.

Deterministic information:

N, set of nodes;
R, set of potential locations for the hubs (R ⊆ N);
T , set of time periods in the planning horizon;

Γ, capacity of a module;
Qk, maximum number of modules that can be installed in a hub at location k ∈ R;

di j, distance between nodes i ∈ N and j ∈ N;
χ t , collection cost in period t ∈ T , i.e., cost per unit of distance of one unit of flow that goes from a

non-hub node to a hub in period t;
δ t , distribution cost in period t, i.e., cost per unit of distance of one unit of flow that goes from a hub

to a non-hub node in period t ∈ T ;
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α t , transfer cost in period t, i.e., cost per unit of flow and per unit of distance between hubs in period
t ∈ T ;

gqt
k , total cost resulting from setting up the initial capacity of a hub to be located at k ∈ R in period

t ∈ T with q modules. This cost now includes the operating cost for that capacity until the end of
the planning horizon;

hqt
k , cost to be paid from period t ∈ T until the end of the planning horizon when the capacity of (an

existing) hub k ∈ R is expanded using q additional modules.

Stochastic information

S, Finite set of scenarios describing uncertainty;
ps, probability that scenario s ∈ S occurs, ∑s∈S ps = 1;

wt
i js, flow to be sent from node i ∈ N to node j ∈ N in period t ∈ T , and scenario s ∈ S;

Ot
is, total flow originated at node i ∈ N in period t ∈ T and scenario s ∈ S, Ot

is = ∑ j∈N wt
i js;

Dt
is, total flow destined to node i ∈ N in period t ∈ T and scenario s ∈ S, Dt

is = ∑ j∈N wt
jis.

First stage decision variables:

ut
k =

{
1, if a hub is installed at k ∈ R in period t ∈ T ,
0, otherwise. (k ∈ R, t ∈ T )

zqt
k =

{
1, if hub k receives q modules in period t,
0, otherwise. (k ∈ R,q = 1, ...,Qk, t ∈ T )

Recourse decision variables:

rqt
ks =




1, if hub k receives q additional modules in
period t and scenario s,

0, otherwise.
(k ∈ R,q = 1, ...,Qk −1, t ∈ T \{1},s ∈ S)

xt
iks = amount of flow with origin at i ∈ N that is collected at hub k ∈ R in period t ∈ T and

scenario s ∈ S.
yit

kls = amount of flow with origin at i ∈ N that is collected at hub k ∈ R and is distributed by hub
l ∈ R in period t ∈ T and scenario s ∈ S.

vit
l js = amount of flow with origin at i ∈ N destined to node j ∈ N that is distributed by hub l ∈ N

in period t ∈ T and scenario s ∈ S.

Using all the information above introduced, we can formulate the extensive for of the deterministic equiva-
lent of our problem—hereafter denoted by DE—as follows:

minimize ∑
k∈R

∑
t∈T

(
f t
kut

k +
Qk

∑
q=1

gqt
k zqt

k

)

+∑
s∈S

ps

[
∑
i∈N

∑
k∈R

∑
t∈T

χ tdikxt
iks + ∑

i∈N
∑
k∈R

∑
l∈R

∑
t∈T

α tdklyit
kls

+ ∑
i∈N

∑
l∈R

∑
j∈N

∑
t∈T

δ tdl jvit
l js + ∑

k∈R

Qk−1

∑
q=1

∑
t∈T\{1}

hqt
k rqt

ks

]
, (1)

subject to
Qk

∑
q=1

zqt
k = ut

k, k ∈ R, t ∈ T, (2)

∑
t∈T

ut
k ≤ 1, k ∈ R, (3)

ut
k ∈ {0,1}, k ∈ R, t ∈ T, (4)

zqt
k ∈ {0,1}, k ∈ R, q = 1, . . . ,Qk, t ∈ T, (5)

∑
k∈R

xt
iks = Ot

is, i ∈ N, t ∈ T, s ∈ S, (6)
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∑
l∈R

vit
l js = wt

i js, i, j ∈ N, t ∈ T, s ∈ S, (7)

Qk−1

∑
q=1

rqt
ks ≤

t−1

∑
τ=1

uτ
k , k ∈ R, t ∈ T \{1}, s ∈ S, (8)

∑
i∈N

xt
iks ≤ Γ

Qk

∑
q=1

t

∑
τ=1

qzqτ
k +Γ

Qk−1

∑
q=1

t

∑
τ=2

qrqτ
ks , k ∈ R, t ∈ T, s ∈ S, (9)

Qk

∑
q=1

∑
t∈T

qzqt
k +

Qk−1

∑
q=1

∑
t∈T\{1}

qrqt
ks ≤ Qk, k ∈ R, s ∈ S, (10)

∑
l∈R,l �=k

yit
kls − ∑

l∈R,l �=k
yit

lks = xt
iks − ∑

j∈N
vit

k js, i ∈ N, k ∈ R, t ∈ T, s ∈ S, (11)

xt
iks ≤ Ot

is(1−
t

∑
τ=1

uτ
i ), i,k ∈ R : i �= k, t ∈ T, s ∈ S, (12)

∑
i∈N

vit
l js ≤ Dt

js

t

∑
τ=1

uτ
l , j ∈ N, l ∈ R, t ∈ T, s ∈ S, (13)

vit
l js ≤ Dt

js(1−
t

∑
τ=1

uτ
j ), i ∈ N, l, j ∈ R : l �= j, t ∈ T, s ∈ S, (14)

rqt
ks ∈ {0,1}, k ∈ R, q = 1, . . . ,Qk −1, t ∈ T \{1}, s ∈ S, (15)

xt
iks ≥ 0, i ∈ N, k ∈ R, t ∈ T, s ∈ S, (16)

yit
kls ≥ 0, i ∈ N, k, l ∈ R, t ∈ T, s ∈ S, (17)

vit
l js ≥ 0, i, j ∈ N, l ∈ R, t ∈ T, s ∈ S. (18)

In the above model, the objective function (1) evaluates the total expected cost which consists of the first
stage cost (installing the hubs and their initial capacities) plus the expected cost associated with the recourse
decisions (capacity expansion for existing hubs and flow routing). Constraints (2) ensure that in each time
period when a hub is installed there must must be a certain number of modules defining its initial capacity.
Constraints (3) state that one hub can be installed at most once during the planning horizon. Constraints (4)
and (5) are the domain constraints for the first stage decision variables.
The constraints associated with the second stage problem (one group for each scenario s ∈ S) start with (6)
ensuring that in each time period the flow originated in each node is routed via at least one hub; in turn,
(7) ensure that in each time period the flow between each pair of nodes is distributed via at least one hub.
Inequalities (8) state that the expansion of the capacity of a hub in a time period is possible only if the hub
had been previously installed. Relations (9) are the capacity constraints for the hubs. They ensure that for
each hub and in each time period the incoming flow from non-hubs as well as the flow originated at the hub
cannot exceed the operating capacity. In each potential location for the hubs there is a maximum number
of modules that can be installed. This is stated in constraints (10). Relations (11) are the flow conservation
and divergence constraints. Inequalities (12) impose that a hub must collect its own outbound flow. By
constraints (13) we ensure that the flow destined to a node can be distributed only by an open hub whereas
(14) guarantees that a hub distributes its own inbound flow. Finally, (15)–(18) are domain constraints.
DE is a large-scale mixed-integer linear programming model even for tiny instances of the problem. This
fact motivates the developments that we present next.

3 Valid Inequalities

In order to enhance the extensive form of the deterministic equivalent presented in the previous section, we
propose several sets of valid inequalities. Below we present a brief synthesis of the deep analysis performed
in [13].
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The first set of valid inequalities is generated by the Chávatal-Gomory rounding method 1 and is derived
from constraints (10) that establish an upper bound on the total number of modules installed in each potential
location and for each scenario. The reasoning we use next has been also considered among other authors
(see [14] for concentrator location problems and [11] for the variable size bin packing problem).

Result: The following inequalities are valid for DE:

∑
t∈T

Qk

∑
q=1

⌊
q
p

⌋
zqt

k + ∑
t∈T\{1}

Qk−1

∑
q=1

⌊
q
p

⌋
rqt

ks ≤
⌊

Qk

p

⌋
∑
t∈T

ut
k, k ∈ R, s ∈ S, p = 1, . . . ,Qk. (19)

�

A second set of valid inequalities is derived from the assumption that each hub processes its outbound flow
combined with the rounding approach used in the previous result. The corresponding result can be proved.

Result: The following inequalities are valid for DE:

Qk

∑
q=1

⌈
q
p

⌉
zqt

k +
|T |

∑
τ=t+1

Qk−1

∑
q=1

⌈
q
p

⌉
rqτ

ks ≥
⌈

Θt
ks
p

⌉
ut

k, k ∈ R, t ∈ T, s ∈ S, p = 1, . . . ,Θt
ks, (20)

where Θt
ks denotes the minimum number of modules that need to be installed in location k ∈ R from period

t ∈ T until the end of the planning horizon in some scenario s ∈ S �

In order to derive the third set of valid inequalities, we can compute a lower bound, ∆t
s, on the total number

of modules that must be operating in period t ∈ T under scenario s ∈ S. From this quantity we can write a
set of constraints ensuring that in period t and under scenario s at least ∆t

s modules will be operating. From
these inequalities and using again a similar reasoning as presented above we can prove the following result:

Result: The following inequalities are valid for DE:

∑
k∈R

Qk

∑
q=1

t

∑
τ=1

⌈
q
p

⌉
zqt

k + ∑
k∈R

Qk−1

∑
q=1

t

∑
τ=2

⌈
q
p

⌉
rqτ

ks ≥
⌈

∆t
s

p

⌉
, t ∈ T, s ∈ S, p = 1, . . . ,∆t

s, (21)

�

Finally, we propose a fourth set of valid inequalities (of a different type) as follows:

xt
iks ≤ Ot

is

t

∑
τ=1

ut
k, i ∈ N, k ∈ R, s ∈ S, t ∈ T. (22)

These inequalities ensure that if no hub is installed in location k ∈ R until period t ∈ T , then the associated
x-variables should be set to zero. We note that these constraints are implied by constraints (2), (8), and (9)
together. However, despite being redundant for model DE, adding them to the formulation may render an
additional improvement to the linear relaxation bound.

4 Computational Results

We tested the models discussed in the previous sections using a set of instances generated from the well-
known CAB data set (available in [5]). We considered instances with |N| ∈ {15,20,25}, |R| ∈ {10,15,20,25}
(|R| ≤ |N|), |T | = 3, |S| = 5, and Qk = 5, k ∈ R. Furthermore, we assume that each scenario represents a
trend for the flows. Starting from the CAB data (with flows scaled to add 1) we considered 5 possibilities

1Suppose we have a valid inequality, ∑n
j=1 a jx j ≤ b, for a polyhedron P given by the linear relaxation of an integer program (we

are assuming that variables x j can only take non-negative integer values). Then, the inequality ∑n
j=1�a j�x j ≤ b is also valid for P.

The left hand side is integer for all feasible solution (x1, ...,xn) ∈ X where X is the feasibility set of the integer program. Thus,
∑n

j=1�a j�x j ≤ �b� is a valid inequality for X .
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for this trend: a progressive increase in the flows of 6%,12%,18%,24%,and 30%. Finally, as it is usually
done with the CAB data set, we considered α t ∈ {0.2,0.4,0.6,0.8}, t ∈ T . Therefore, for each combination
of N and R we get 4 instances.
Below we present results for two models: model DE and model DE enhanced with the 4 sets of valid
inequalities proposed in the previous section. The models were implemented using IBM ILOG Concert
Technology with IBM Cplex 12.6. The experiments were conducted on a 64-bit machine running ubuntu
Operating System, with a processor INTEL XEON E5-2650V3 10CORE 2.3GHZ with 32GB RAM. A
CPU time limit of 20 hours was set for each instance.
In Figures 1 and 2 we present results for the instances tested assuming that each module has capacity 0.1.
Figure 1 depicts the number of instances solved to optimality within the time limit for each combination of
|N| and |R| (we recall that for each such combination 4 instances were generated). By observing this figure
we conclude that using the enhanced model can clearly solve more instances to optimality than if we use the
base model. Observing Figure 2 we conclude that the valid inequalities proposed are in fact an important

Figure 1: Effectiveness Number of instances solved.

contribution or a better polyhedral description of the feasibility set of the problem we are investigating.
Finally, we present a table reporting CPU time (in seconds). Table 1 shows again the superiority of the

Figure 2: Average linear relaxation gaps (%).

enhanced model over the model without valid inequalities. The CPU time presented is the average CPU
time for the instances successfully solved to optimality. In [13] we report extensive results that include the
analysis of the relevance of using a stochastic modeling framework for our problem instead of a (simpler)
deterministic one.

5 Conclusion

In this work we have investigated a stochastic multi-period capacitated multiple allocation hub location
problem. We proposed a two-stage stochastic modeling framework. Assuming that uncertainty can be cap-
tured by a finite set of scenarios we were able to derive the extensive form of the deterministic equivalent
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Table 1: Average CPU time (seconds) when solving the problem to optimality.

Model DE Model DE enhanced
|N| |R| # solved CPU (sec.) # solved CPU (sec.)

15 10 4 15226 4 528
15 2 34275 4 15405

20 10 3 15875 4 4966
15 2 61757 3 29064
20 0 — 1 20237

25 10 4 23116 4 2161
15 0 — 3 30546
20 0 — 1 37679
25 0 — 0 —

problem. For the latter model, we proposed several sets of valid inequalities. The computational tests
performed show that by using an off-the-shelf solver, the enhanced models make it possibly to solve until
optimality instances that could not be solved using the base model. This work represents a first step to-
ward the development of effective models and solution techniques for multi-period stochastic hub location
problems.
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