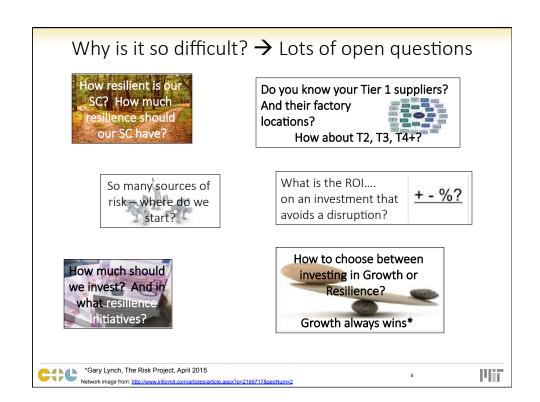
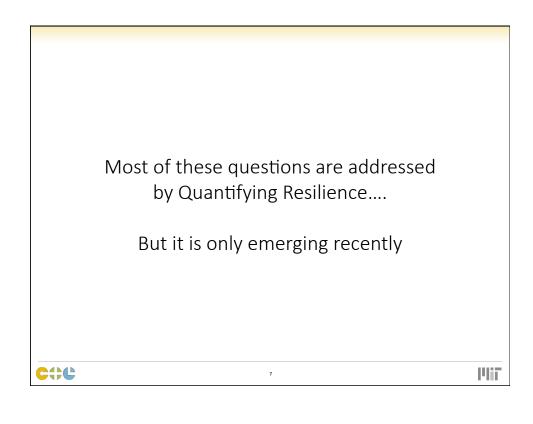

### Overview

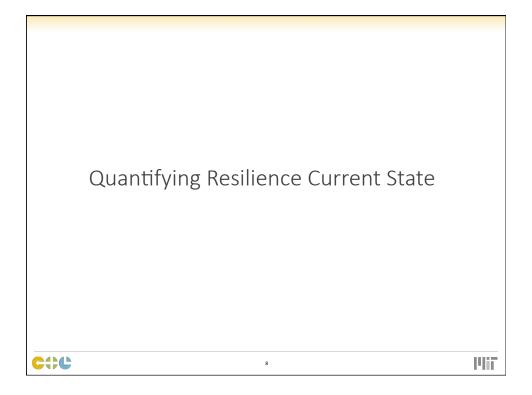
- Current State and Evolution of Supply Chain Resilience
- Quantifying Resilience Current State
- Industry Perspective and Actions
- Quantifying Resilience Challenges



lilii.


Current State and Evolution of Supply Chain Resilience (SCR)





## Supply Chain Resilience Current State

- Operational uncertainty still exists
  - Daily variation
  - Disruptions
- Options for addressing uncertainty plentiful & known
- But pursuing resilience is proving difficult for practitioners









### Quantifying Resilience: Early Contributions

- Hendricks and Singhal studies (2003, 2005, 2009) indicated shareholder wealth drop >10% for shipment or production delays, almost 7% with excess inventory
  - Helped socialize the importance and potential impact of SC glitches
  - $-\;$  But Zsidisin, Petkova and Dam (2016) studies suggest lower impact, ~1.94% impact from glitch announcement
- · Measurement of resilience only recently surfacing in literature reviews
  - Most work on risk mgt, quantifying risk, vulnerabilities growing from early 2000s
  - Christopher and Peck (2003) put forward a qualitative risk assessment tool
  - Pettit (2008) and Pettit, Fiksel and Croxton (2010), earlier authors to write about measuring supply chain resilience, described optimal resilience, a 'zone of resilience' outside of which eroding profits or exposure to risk serve as measures. Conceptual.
     But also proposed use of Supply Chain Risk Assessment Model (SCRAM)
  - Klibi, Martel and Guitouni (2008, 2010) a seminal brief on measurement and the challenges that exist for researchers desiring to model for supply chain network design
  - Schmitt and Singh (2009) measured risk, assessed mitigation strategies cf risks
  - Paulsson, Nilsson and Wandel (2011) estimate disruption risk exposure into estimated and known result impacts

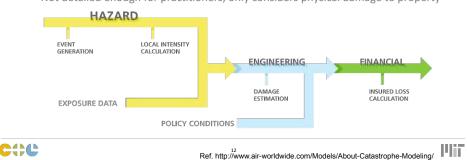


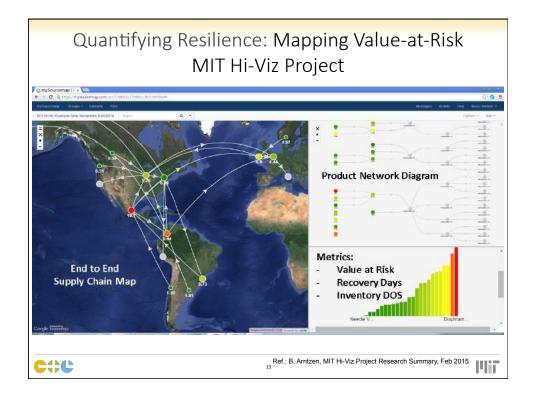
Ref. "Managing Risks: A New Framework", HBR 6-12, Kaplan and Mikes



### Quantifying Resilience: Promising recent work

- Aglan and Lam (2015)
- Cardoso, Barbosa-Póvoa, Relvas and Novais (2015)
- Barroso, Machado, Carvalho and Machado (2015)
- Munoz and Dunbar (2015)
- Snoek (2016)
- Braud and Gong (2016)





PHIL



### Quantifying Resilience: Catastrophe Models

- Catastrophe Models
  - Limited loss data from rare occurrences, Property focused
  - Very effective at leveraging new emerging data streams
  - Collect physical characteristics data on natural disasters, terrorism and generate full spectrum of potential events, then tested and sensitivities for intensity; these are then applied to detailed property data to create a damage function – identifies type of damage expected for properties of different characteristics (construction, use, occupancy) and then assesses financial damage associated with the physical damage
  - Output is a loss forecast over a range of 10-100 years
  - Not detailed enough for practitioners, only considers physical damage to property





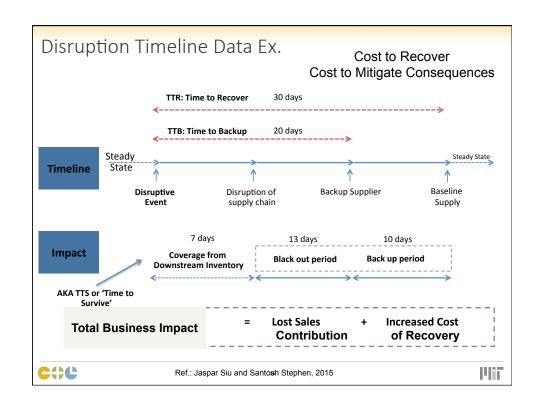
### Quantifying Resilience: REI, VaR

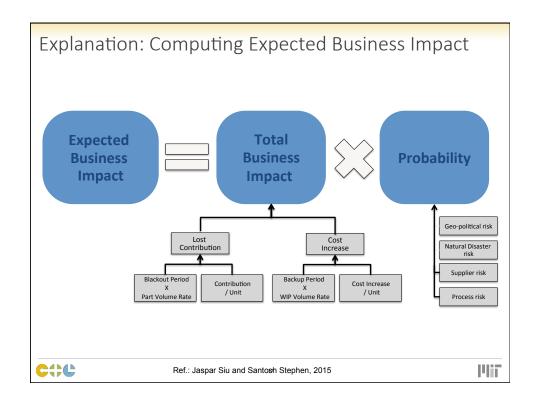
- Value at Risk a measure of the peak value (revenue, profit, contribution) that is assessed
  to be at risk within a supply network, often measured at nodes and then combined to
  provide a network-wide value at risk
- Risk Exposure Index (Simchi-Levi, 2012) provides an indexed risk rating of 0.0→1.0 based
  on the performance impact (revenue, margin, units) from disruption for each node. Uses
  Time to Recovery (TTR) at each supply chain node to identify the cost from a potential
  disruption, noting financial impact at the node and then across the network.
- Time to Recovery (TTR) per Cisco Systems, Inc. is "...based on the longest recovery time for
  any critical capability within a node, and is a measure of the time required to restore 100%
  output at that node following a disruption" (O'Connor 2009). Simchi-Levi defines it as "the
  time it would take for a particular node a supplier facility, a distribution center, or a
  transportation hub to be restored to full functionality after a disruption"
- Time to Survive (TTS) proposed by Simchi-Levi (2015) "is the maximum duration that the supply chain can match supply with demand after a node disruption." Very useful to identify supply nodes where the TTR is longer than the TTS → blackout/outage predictable

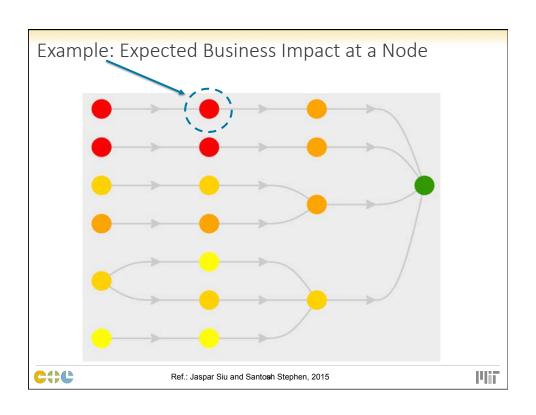


PHI

# Quantifying Resilience: Balanced Scorecard of Resil


| BALANCED RESILIENCE SCORECARD         |                  |                                     |
|---------------------------------------|------------------|-------------------------------------|
| QUANTITATIVE                          |                  | QUALITATIVE                         |
| Value-at-Risk                         | Probabilities    | Survey-based, self-<br>assessments* |
| Cost to Recover (=f(time to recover)) | Cost to Mitigate |                                     |


- \* SCRLC Risk Mgt Maturity Assessment, SCRAM Method, Cranfield/Christopher-Peck Method
- Multi-level assessment node, supply chain, extended SC
- Various ways to understand the expected Business Impact
- Measure and quantify (Time to Recover (TTR))


**C4)** 

Ref.: Jaspar Siu and Santosh Stephen, 2015









### Resilience Analytics: Quantitative Data Needs

- Value-at-Risk
- Risk Exposure Index
- Expected Business Impact
- Cost to Recover
- Cost to Mitigate consequences
- Cost to Mitigate probabilities
- Time to recover
- Time to survive
- Blackout
- Time to backup



Ref.: Jaspar Siu and Santosh Stephen, 2015



### Quantifying Resilience: An Assessment

- Risk Exposure Index & Value at Risk
  - Helps identify priorities, and quantify revenue or profit loss potential; but does not provide insight into which options to choose or how much to invest
- Expected Business Impact
  - Difficult to take into consideration different risk preferences and uncertainties
- Balanced Scorecard of Resilience
  - Provides a more holistic assessment, but depends on qualitative work in addition to quantitative assessment
- The Frontier
  - Defining the business investment case, getting full set of data to make choices is starting to take shape (e.g. DSL Ford study)





Industry Perspective and Action



27



### Ongoing Mapping and Monitoring

- Design and install monitoring systems
  - Global event monitoring: geographic, political, weather
  - Supplier operational and financial health
  - Monitor entire network, find your sources
- Mapping monitoring services can help

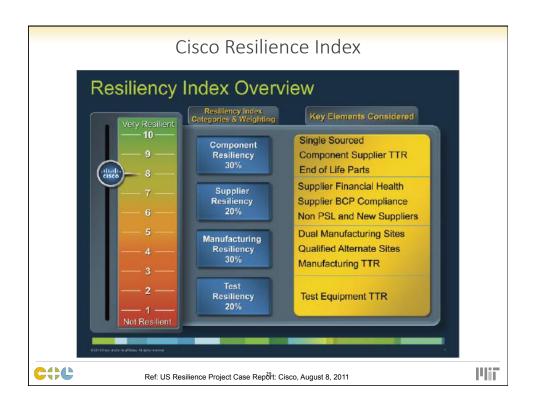


- Mapping upstream supply chain
  - \*MERILERT.








- Disaster tracking, monitoring, alert/notification management
- Have helped companies mitigate













# SCRLC Supply Chain Risk Management Maturity Model Helpful Hints: Use whole numbers between 2-5, evite rating in Column Cor set the drop dress arrans Formation between the larger, user at the lower days La Security La Secu

## One company's approach

- No "single system metric" to quantify supply chain risk
- Supply Chain risk reduction is part of Enterprise Risk Management
- Assess three factors
  - Impact, vulnerability and speed of onset
  - High, medium, low and some dimensions of each
  - Plot on Vulnerability Impact chart to create relative priorities



- Executives are assigned to reduce the risk to an agreed to manageable level, making informed risk/reward based decisions
- Decisions based on qualitative and some quantitative information, committee input





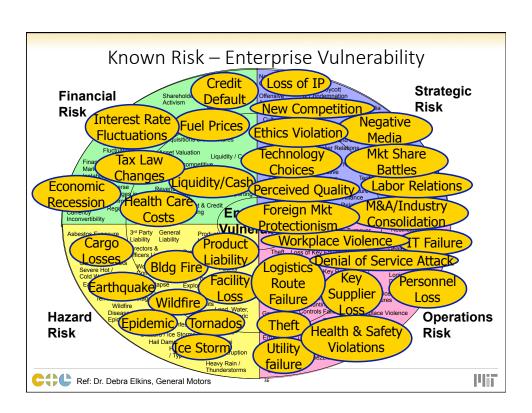
# **Proposed Standard Measures**

- Revenue protected by meeting risk criteria
- Time to Recover
- Time to Survive
- Value at risk
- Estimated Maximum Loss
- Probable Maximum Loss
- Likelihood of Occurrence
- Sole supplier
- Strategic Product Protection
- Critical sites protection
- Risk Mitigation Actions status
- Categorization of risk type
- Risk Investment cost

That's a lot of data! Accessible? Qualitative? Calibrated?

Quantifying Resilience Challenges




Hil

Hii

### The Challenges & My Suggestions

**C41** 

- Focus on source of disruption risk or outcome from the disruption?
  - Most research is conducted on the many different sources of risk, rather than the predictable set of limited outcomes → Failure Modes.



# Supply Chain Failure Modes/Predictable Outcomes

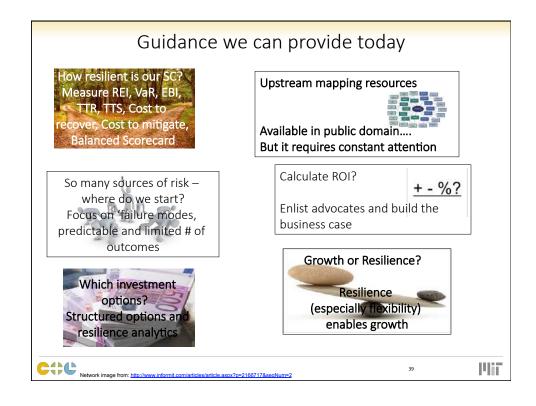
All disruptions result in a loss of one or more of these capacities:

- Capacity to acquire materials (supply)
- Capacity to ship/transport
- Capacity to communicate
- Capacity to convert (internal operations)
- Human resources (personnel)
- Financial flows



Sources: "SC Response Project Interim Report" by J<sub>3</sub>Rice, F. Caniato, Aug 8, 2003; Draft of SC Response Book




### The Challenges & My Suggestions

- Focus on source of disruption risk or outcome from the disruption?
  - Most research is conducted on the many different sources of risk, rather than the predictable set of limited outcomes → Failure Modes.
- · Refine the use of 'Mitigation'
  - Mitigate the probability of a disruption? → Prevention, focus on source of risk
  - Mitigate the consequences of a disruption? → Resilience, focus on outcomes
- Finding and accessing the data
  - The raw data is not readily available and process not scalable
  - Identify proxies and processes that can work to get TTR, TTS, Blackout, Cost to mitigate consequences, Cost to recover
- Develop resilience analytics to enable the investment decision
  - Using new data sources, options analysis, tradeoffs; bring innovation (and marketing) into the process



38

Plif



## Auto OEM Business Continuity Planning Executive

"Yes, I agree that investing in supply chain can absolutely drive growth — we just need to help the leadership see the connection."



